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ADIABATIC

Equations were derived for the prediction of velocity distribu-
tions for fully developed adiabatic turbulent flow in smooth tubes;
both the incompressible-and compressible-flowcases were treated.
The analysis produced a single equation that represents flow id both
the conventional buffer layer + the laminar layer. By graphical
integration of the velocity-distributionequations developed, a
dimensionless flow-rate parameter was obtained and plotted. Use
of the flow-rate meter permits the prediction of pressure
gradients along a tube for various flow rates.

b tier to check the analysis and to determine values for
the constants appearing in the equations, tests were conducted to
detemine velocity distributions in air flowing without heat-transfer
ina smooth tube having an inside diameter of 0.87 inch and a length

“ of 87 inches. Ik& were obtained fcm f- developed velocity dis-
tributions and for developing velocity distributions at various
distances fl’omthe entrance of the tube.

The results.for fully developed flow were correlated by using
conventioxA” dimensionless velocity and distance Parametms, and
agreed closely with those of Nikuradse and other investigators.
The plots of the equations and of the flow-rate parameter agreed
well with the data when appropriate values of the two experimental
constants-appearingin the equations were used.

llTROIXJCTIOl?

Much empirical work has been done on the flow of fluids in
tubes, and it has lQng been possible to predict fluid-flow pressure
drops with a fair degree of accuracy by using experimentally deter-
mined friction factors (reference 1, pp. 232-272). Somewhat less
work has been done in an effmt to understand the mmhanism of

.
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turbulent flou ti tubes anl to develop ~ theory that is in ocmplete
agreement with the measurements. The l@rm&n similarity theory, whioh
is perhaps the best-lmown contribution, satisfactorilyprediots
the”velooity distributions for fully developed incompressibleflow
exoept in the vicinity of the wall (referenoe2).

b an investigationmade at the NMIA Lewis laboratory, a new
equati6n was developed that gives the relation between velocity and
diEiiancefrom the wall for both t$e +aminar and the so-called buffer
regions. For oontpleteness,the ~ Prandtl development for the
velooity distribtiion at a distance from a wall (turbulentregion)
iS dSO included. ~ the present analysis, this development is ex-
tenbd to compressible flow, that is, to the case in which variation
of temperature aoross the tube due to high velocities is appreciable.

Because of the so-amity of velooity-distributiondata,
especially for comiitions mier which compressibilitymight be
a~ciable, Investigationswere tie to detemine velocity dis-
tributions in a tube at various distanoee frcm the entranoe ami
fm fully developed flow. The results of these investigations,
reported herein, areused to

General

uheok the analysis.

AmIxSIB

Turbulence !lhecmy

During turbulent flow through a tube, portions of the fluid
move about in mxxiom fashion. Inasmuch as a transverse-velocity
gradient exists, some portions enter regions of various mean axial
velocities. Momentum is then transferred from one portion to
another ad a shear stress, in @ition to the viscous shear stiess y
is prcduoed.

By analogy with the law for visoous shear stress Tv . y d@.y,

the equation fca’the shear stress pmluced by turbulence is often
given-in the following form:

where PC Is omprable to the vlmosity
ml E is the uoeffioient of

(1)

for ViSUOUS shear I.L,
eddy diffusivity, the value for whloh

.. ——— - ---—— ----—- —
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ia determinedly the
point. (The symbols

3

amount and the kind of turbulent mixix at a
used in this report are defined in the appendix.)

The ~ogy between shear streasea produoed by viaooaity and
those p?oduced by turbulence ia not quite exact because the mechanism
for momentum transfer ia amewhat different for the two conditions.
The chief difference probably ia that in the caae of viaooua shear
momentum transfer takea place suddenly at the instant the moleoulea
oollide; whereaa in the caae o~ence, portions of the fluid
can oontinuoualy tranafer their mmentum aa they travel transversely
-much as they continuouslyact on one anol+er. This difference
can, however, be absmbed in the value of c, which is descriptive
of the turbulence mechanism, ao that equation (1) should still be
valid.

Thetotal shear
shear atreas to

atreaa T may be obtained
the turbulent shear atreas

IiIarder to make practical use of equation

by adding the vis-
aa follows:

(2)

evaluated for eaoh Pofiion of the flow. ‘Because‘t~ actti mech-
anism of turbulent ~change of maneutum ia very complicated, the
method of dimensional analyais ia used and the conatanta obtained
in the analysia are evaluated by experiment. Fran consideration
of the various faotors on which E might depend, the following
functioml relation is aaaumed:

e ( dll d2u d3u= fu, y, E,—, —

)

—.**
p dy ~2’ ~3’

Although the turbulence mechanism might conceivably depend on P/P,
the influence of this faotcr ia aaaumed negligible d the validity
of this assumption la expmlmentally checked.

Flow at a distance from wall. - It ia shown by von K&m&n
(referenoe2) that fm flow at a distance y - a wall the
shear stress is given by

.

.
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T = PK2 ‘(3)

where K2 is a constant of proportiotiity experimentallydeter-
-a. Viscous shear strees Is neglected in the derivation of”this
equation. Combination of this equation ani equation (2), with the
viscous shear stress nsgleoted because it is small except in the
region close to the wall, gives tha following expression for local
eddy diffusivity for flow at a distance from the wall:

.

(4)

Equation (4) could also have been obtained from the general func-
tioml relation for c by assuming that only the first and second .
derivatives of the velocity with respect to distaqce are important

.

in determining the value of c, and by applying dimensional anal-
ysis. This fact indicates that the eddy diffusivityj or turbulent
transfer of momentum, at a point away from the wall is chiefly
depenient on the velocities in the vicinity of the point relative
to the velocity at the potnt and is Indepetient of the magnitudes
Ofuandy. The fact that c at a point away from the wall is
dependent more on the velooity distribution than on the magnitude of
the velocity u at the point may be illustratedby noting that at the
smooth entrance to a tti6, where the velocity profile is unifarm over
most of the cross seotion, turbulence at a point away fl?omthe wall
is negligible compared with that farther duwn the tube at a point at
which the mean axial velocity is equal to that at the entrance, but
at which the fl~ profile is fully developed. This change from zero
eddy di.ffusivityat the entrance to an appreciable degree of turbu-
lence farther down the tube has been clearly shown by experiments
with dye in a stiesm (reference1, (Frontispiece.)). In the remainder ‘
of the analysis, equation (3) is used in calculating flow at points
distant from the wall.
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Flow in vicinity of wall. - Although the effects of the magni-
tudes of u and y on E oanbe neglected in considering flow at
‘pointsdistant fra the wall.,it appears that they must be aocounted
for in considering flow olose to the wall. The experimental @&
available iruiioatethat the turbulent tr%msfer of momentum axnlthus
the turbulent shear stressbecomeverymall in theregion close to .
the wall, so that near the wall pmotioally all shear stress is
prcduced by viscou&&tion and the velocity u is very nearly a

linear functi= y (reference 3). The seoond and possibly
higher velooity derivatives therefore approach the constant value
zero in the vicinity of the wall and the first derivative”approaches
a oonstant, whioh is defined when u and Y sre aiven. Aa pre-
viously stated, the effect of p/p -on e 3S ass=

As a first approximation,‘thefunotional relation for
fore written as

c = f -(u,y)

The range of values of y for whioh this
cient will be experimentallydetmnined.

c = nzuy

&ligible.
E is there-

approx~tion is
From dimensional

.

suffi-
audysis,

where n2 is a constant of proportionality to be detemnined
experimentally. Substituti& 02 equation ~5) into equation (2)
gives

(5)

(6)

b the remainder of the analysis, equation (6) is used in calculating
velooity distributiomi close to the wall.

-. .._ .—-.. .—. _____ . . . . . _. _._. .- ___ . . ..... ___ ___ ___ ___ ___
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Equations far

mow in vicinity of wall.
are in dimensionless fm, the
quantities are employed:

Then

lkmmpressible

IJACATH 21.38

Flow

- h order to obtain equations that
following conmmnly used dimensionless

+4F6Z
“Z7’Z-Y

‘O ~TdpO d2u:

dy2 wo2/Po dy+

(7)

(8)

(9)

(lo)

On stibstitutionof equations (7) to (9), equation (6) becmes

where p and p have been replaoed by PO and I.Lo,respectively,
beoause the density and the visocmity are the same at all points for
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incompressibleflow. The shear stress T has been approximated by
TO beoause only the region close to the wall is being considered

and the miation in 7 for this region is slight.

By rearrangemmt and canoelMtion of like terms, the preoeding
equation simplifies to

This equation
the solution

(n)
du+

.

is a first-omier linear differential equation having

Jo

When y+ = O, then u+=oald”

flu+

J’&e 2 au+ = o

0

Therefore C . 0 ml

P+

~

(nu+]2 -(II,U+)2
y+=e 2 e 2 du+

o

. . .._.._,__——.—-. .—. .—-—.. —.- —- . . ..- --—-— -..--—- --—-— -— ——. —---- -—————
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This equation can be rewrittan as

f

‘“+4.302
2--&e d(nu+)

n

where le2

G
ia the

reference 4.) The relation
fluw near the wall is given

+&f
2&e

..

nomal error function of

%etween u+ ad y+ for
in equation (12).

NAOA TN 2138 .

(12)

nu+.(Set3

incompressible

Flow at a distance ficm wall with sheer stress uniform across ,
the tube. - For flow at a distanoe from the wall, the analysis that
‘loped by von K&m&n for the region near a wall (effect of
viscosity negleoted) and applied by Prandtl to the region at a dis-
tance frm a wall is presented here. This application involves the
assumption that the sheer stress is constant across ‘the.tube, an
assumption that will later be shown to be suffloientlyaccurate for
this application. If this assmption is made and.expressions (9)
and (10) are substituted into equation (3),

i
~2u+

()

/J—= -
#

dr+

This equation can be integrated to give

(13)

–.—.
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At the wall, the velocity gradient is very large compared with that
at a distanoe from the wall so that dy+/du+ oan be considered
equal to zero when y+ = O, giving cl = o ala

Y+=+@
au+

(14)

After the variables are separated, this equation oan be integrated
egain to give

u+ .+ loge y+ + c (15)

where C is a constant of integration, the value of which may be
fouml when the ranges of apjlioability of the equations for flow
olose to a wall.W at a distance tia a wall are lmown. The ranges
of applicability for the equations are to be experimentally deter-
mined. The relatio~ between u+ d y+ for incompressible flow
at a distanoe frcm the wall when constant shear stress across the
tube is assumed is given in equation (15).

Flowat distance fram wall with variable shear stress across
the tnibe.- A result that avoids the assumption of uniformity of
shear stress across the tube was derived by von &m&n substantially
as follows: The relation for the variation of shear stress with
radius f= fully developed flow is obtained by equating the shear
foroes to the pressure forces acting on a cyl~er of fluid of
arbitrary radius ti differential length (reference 5). This rela-
tion is

T ‘To==— (b%) To
‘o

or

T=(+)TO

‘o

(16) -

.—. ..—._._~.—— --- -—— ———--— —.- -—— ——- -— —-.
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where

+f’l@&
‘0 ‘F7F’r0 (17)

On substitution of equations (7) to (10) W (16), equation (3)
hemmes, in dimensionless form,

Q+”

(18)
.

where the negative sign was selected O? taking the square root In
order to make K positive.

.

The first ~tion gives o

.

As previously stited, the velooity gradient at the wall is very
large mmpared with that at a distanoe from the wall and dy+/du+
oan be considered to-be zero at the wall (that is, at y+ . O).
Hence

!s. - 21$q d- + 2Kro+
au+

(19)

.

.

——
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By
to

substitution of
give

X2 ~+ - ~+,=r equation (19) oan be integrated

l“+’soy]+c(20)

Muation (20), which is substantially~ equation obtained by
von K&&, relates u+ to y+ for various values of m+. TaMng
the variation of sheer stress into account intawiuoes the”additional
dimensionless parameter ro+, which will be oalled the tube-radius

~ter. The equations developed by von K&m&n for the flow
distant fra the wall will be extenied for oq”ssible flow by a
method subsequently developed herein.

l!Quationsfor Compressible Flow

In the derivation of the compressible-flowequations, uniformity
of shear stress across the tube.is assumed and the error in@Whxd
is disouss~ in the section “Effect of Variable Shear Stress.”

Flow in vicinity of wall. - For cwpressible flow in a tube,
the statio temperature ti thus the density and the viscosity vary
across the tube. For flow without external heat transfer, the total
temperature at any point across the tube
the wall tempemture, so that the static

This relation is exact for

By use of the perfect
aa

U2
t =To-—

2gJcp

is praotioally
temperature is

tie same as
given by

a Prandtl nwnber of 1.

(21)

gas law,

.

,

)

the density p may be expressed

— —...-
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where the statio pressure p
tube.

Viscosity is a function
by an equation of the form

PO
P“= .c,

1 .—
2g:cpTo

where K is s@e constant.

(22)

has been assmed uniform across the

of temperature and can be represented

v = Ktd (23)

Then

or

(24)

Substitti@ these values for the density W the viscosity into
equation (6) and letting T = To result in

.- —.. .-
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Substituting values &cm equations (7) to (9) into-equation (25), in
order to convert it to a dimensionless form, gives

(26)

where

Thedimensionless
parameter. After

To

a= 2gJcpTopo
(27)

parameter a will.be called the compressibility
equation (26) becomes

au+
.

which is a first-ofier
ooefficients. solving

+Z
1 -au

\ / (28)

linear differential equfLtionwith variable
equation (28) W setting the constant of

integration equaI to =ero, as was done in the solution of equa-
tion (n), gives

For compressible flow in the vicinity of the wall, equation (29)
gives the relation between u+ and y+ for various values of a.

Flow at a distance from wall. - With the assumption of uniform
shear stress, equation (3) canbe written for compressible flow as

.

.
I

- .. .—— . ..— . —— .. . —.——. ..—.--— . _
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to
N
3’

TO .
PO

~ ~2
1 .—

2gJcpTo b–.
~2u 2

2

When written in dimensionless form, this equation bec~s

(30)

One integration of equation (30) osnbe made by stistituting
v = du+/dy+ S& @ = du+/v a@ then separating the vsriablee.
After one integration, equation (30) becmms

()loge c# .-~ sin-l (4EUU+)
w+ ~ .

or

(31)

or

~le~s~-l (T~+)du+
(32) ~

is set eqti to z, equation (32) oan be

@+ =

%
integrated to yield

.

.

.

——
.
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+ – ‘“h-’‘G+j(KG7+CLU+)+C
cl

[
*G

y = ~2w

15

*
sin-l (ra+)

By substituting ay+/du+ from equation (31) for Cl e

in the immediately preceding equation ani letting dy+/du+ equal
zero when y+ and u+ equal zero, C equals zero antithus

.

For compressible flow at a
shows the relation between

distance from the
u+ d y+ for

suhuary of Velooity-Distribution

wall, equation (33)
various values of a.

l?Quations

The important equations that have been darived are assembled
here for convenience:

For Incompressibleflowclose to the well,

J

‘u+ & “
2

&
e d(nu+)

o

.(~+)z

2-.&e ,

(12)

M
2

“hwe k e
is the nomal error funotion of nu+.

. . . .. —...—. .... . -.. —.- - —.- .—- .- —.. .—.- —.-— — -.-——- ---— .——.-.—. -————-—-— ---- -—
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For incompressibleflow at
stress uniform across the tube,

a distance frm the wall, with shear

%gey++cu+---
K

(15)

For incompressibleflow at a distame frcunthe wall with shear
stress variable across the tube,

.+=#ljj~+lO.e(-~~)J+c

For compressible flow close to the wall,

(20)

(29)

.

For compressible flow at a distance from the wall with shear stress
uniform aoross the tube,

cl
[
elk ](K-+a) (33) “

sin-l (AEm+)

Y+=—
ti%a

mPARATu8

A schematic diagram of the experiment apparatus used is showL
in figure 1. Air at a pressure of about 40 pounls per squere inch
gage and at approximately room temperature flowed through two con-
trol valves in parallel, then through a filter, an orifice, a calming
tank, a test section, and into the atmosphere.

,

.

—— —..——— _—. ——
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Test section. - The test seotion consisted of a smooih Inoonel
tube having an inside diameter of 0.87 inoh, an outside diameter of
1.0 inoh, and a length of 87 inohes. The &lminn tank was so con-
structed that either a retied or a right-angle-edge entranoe to the
tube could be used; the rounded entrance oonslsted of a stadard
A.S.M.E. long-radius nozzle. Static pressures were measured through
0.03-inoh holes drilled in the tube at the positions shown in
figure 1.
located at
provided a
tube wall.

Air total temperatures were measured by thermocouples
the inlet and outlet of the tube; these measurements
check on whether heat transfer took place through the

Total-pr ‘essure measurements. - Openings for taking tot&.-
pressure measurements across the tube were located as shown in
figure 1. Holes having 0.15-inoh diameters through whioh a total-
pressure probe entered the tube were dri3J_edin the tube wall.
These holes were located at right angles to the static-pressure t
taps. A probe actuator to move the probe across the tube and to
meaaure its distance into the tube was fitted into a short length
of tubing at each opening. The location of the total-pressure
probe with respect to the opening in the tubeis shown in the insert

. in figure 1. The total-pressure probe used for the measurements had
a 0.016-inch-diameteropening ami a 0.002-inoh wall at the tip. The
probe was flattened out for SOIUSof the runs so that the width of
the opening was 0.005 inch. The probe was made so that the tip
just oleared the edge of the 0.15-inch hole in the test section.
The total projected area of the probe l.nthe direc@on of fl.uw
with the tip at the center of
the Area of the t~e, but the
was considerably less because
downstream of the tip.

the tube was about 1* peroent of ●

effective blocking area at the tip
the main portion of the probe was

MEI’HODS

Procedure

In order to establish the applicability of the equations derived
for fully developed flow, velooity distributions at various dis-
tances from the tube entrance were first determined. Measurements
were made at Reynolds numbers of approximately 40,000, 160,000, and
580,000 with both romded and right-angle-edge entrances and with
corresponding tube-exit Mach numbers UP to 1. The flow rate in
each case was obtaimd by adjusting the inlet Pessure.

. — . . .. . .-— —. . ..— . . . . . . ——-——-—. - -.. — .—. — . ..— — .—————— —. .—...—
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A more extensive series of hvestigations was then oonductti to
detezmine velocity distributions for fully developed flow including
distributions for the,region close to the wall.. Runs were made at
hbout 20 different Re~lds numbers between 10,000 ami 200,000 and
with Mach numbers up to 0.5 with the total-pressureprobe near the
exit of the tube where the flow was practically fully developed.
RunE were made with both the roumied and the right-angle-edge
entxances. Total-pressurereadings were taken at points between
the wall in which the probe opening was located and the center of
the tube. Readings near the opposite wall were inaccurate because
of disturbance due to the probe.

Measurement& were made with both the round and &e flattened
probe tips fn order to determine whether presence of the probe had
any e$fect on the measured velocity distributions in the vicinity
of the wall. Because no appreciable difference could be noticed
between the measurements made with the two types of tip, it was
concluded that the presence of the probe did not affect the meas-
urements @ that the aerodynamic and gecmetric centers of the hole
aoincide.

~ Preliminary runs at high and at”low flow rates showed that the
total temperature of the air was uniform along the length of the
tube, =icating that no heat transfer occurred. The air total
temperaturewas therefore measured only at the outlet.

The following quantities were measured for each run: air flow,
static pressures at the wall, air tot+altemperature, total pressure
at various positions across the tube, and distxmce of the probe tip
flwm the wall.

Reduction of Experimental Data

Velocities.
theory was used;

- For low air-fluw rates, incompressible-flow
the velocities were calculated from the equation

where P was found from’the equation of state for perfect gases

p.pgm

.

.

.

.

.- —— .—— —— — -. — —
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and t was taken equal to the,total temperature. Zn this and in all
succeeding calculations. the static pressure was assumed to be uni-
fOrm

fram

across the tube.

Fa Mach nunibers
the relation

.

greater than 0.2, velocities were oaloulated

w

~

where t = ()T$y

Shear stress. - The shear stress at the wall for fully dev-
eloped flow is related to the friotion-~essure gradient by the
equation

()DQ
‘o = -z ax

fr

The friction-pressuregradients were obtained by subtracting
oqlculatal _ntum-pressure gradients from the measured static-
pressure gradients along the tube; the mwlentum-pressure gradients
were calculated from

where ~ was fo- from the equation of state

p.-

——. .-- .-., .—— .—. - -~. —--- —.-. — —-.——.——— -——-—.
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.
@.

d ~z~z~
-1+1+2

%=
gJc#2p2

~2R2

gJc#p2

The last equation was obtained from the equations of energy, con-
tinuity, * state. The pressire d density gradients were
graphically determined by plotting pressure and density against
distance along the tube amd drawing a tangent to the curve at the

. point in question.

Distance from wall. - The zero rsadix@ of the probe actuator
was found by plotting velooity against distance reading on the
probe actuator for a nmber of runs ard extrapolateing the curves
to zero velocity where all the curves intersected. This extraPok-
tion gave the probe-actuator reading with the probe tip at the wall.
The distance of the tip from the wall for each reading could then
be easily calculated.

,e=$%-” - Tn order to obtain ratios of local to bulk
~ at various positions across the tube, the bulk

velocity ~ ‘was obtahed by’plotting u against cross-sectional
area m%, measur@g the area under the curve,Zand dividing by
the total cross-sectionalarea of the tube mro . This procedure
is equivalent to solving the equation

rYmoz
U d(#)

%=Jo
‘=-02

and gave more accurate valuss of u/% than would have been
obtained by use of orifice measurements of weight flow for the
determinantion of ub, inasmuch as errors in u due to errors

in static-pressuremeasurement~ were also contained in ~ and

any systematic errors tended to cancel.

. -—
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REIU12.E3AND DISCUSSION

Variation of Velocity Distribution

.

along Tube

The results of the tests in which variation of the velocity
distribution along the tube was detemlned are summarized in
figures 2 and 3. Typioal radial velocity distributions at various
tube diameters from the rounded entrance of the tube are shown in
dimensionless form in figure 2.

In figure 3, which is somewhat more descriptive than figure 2,
the variation of velocity along the lnibeat the oenter ani at
r~ro = 0.9 is shown for both a rounded and a right-angle-edge
entranoe. The curves show that the development of the velocity
distributionwas more rapid for the right-ax@e-edge entrance than
for the rounded entiance; with the right-angle-edge entrance fully
developed flow was ob%ined after about 45 tube diameters from the
entranoe, but with the rounhd entrance the distribution was still
developing slightly at 100 tube diameters from the entrance. This
difference in rate of development was ap~ently caused by the vena
contracta formed at the entranoe of the tube with the right-angle-
edge entrame, axxiindioated on figure 3(b) by the points close to
the entrance. The presenoe of the vena mntraota accelerated the
flow at the center of the ttie ati thus hastened the development of
the distribution.

The curves also show that Reynolds number affected the dis-
tribution near the center of the tube beoause u/~ decreases as
Reynolds number increases. This variation is in agreement.with
previous findings (reference 6). Difference in Reynolds number
has, however, little or no effect on the distribution close to
the wall.

A significant observation oan be made from figure 3 concern- ,
@ the difference between the rates of development of velocity
distribution at the center of the tube and.near the wall. F@re 3
indicates that witl -bothentrances the final distribution is
attained much sooner in the vicinity of the wall than at the
oenter of the tube. This fact might explain why, in the present “
investigation,the static-pressuregradients along the tube oaused
by friction were only slightly affected by entrance effects. The
static-pressuregradient is determined by the velocity gradient
at the wall W is unaffected by the distribution in the remainder
of the tube.

.,

..- ..—— ----— —-. - --- —— .—. -—. —..- .. . .. . .--— .- —-..-—
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As will be shuwn in the discussion of fully developed flow in
the section “Effect of Variable Shear Stiess,” the effect of com-
~essibility on velocity distribution is slight; although some of
the determinationswere made at high stisonic lkch numbers, it is
therefwe believed that the results are also applicable to incan-
pressible flow.

Velocity Distributions fm Fully Developed Flow

Correlation of experimenWl data. - The variation of u+ with
T+ for data obtained near the exit of the test section (that is,
ix x/D = 100) where the flow is fully developed is she% on -
rectai@Lax coordinates in figure 4(a). The data obtained near
the wall are plotted.to two y+ scales. The data =e plotted
semil~ithmica12y in figure 4(b). Data for’flow olose to the
wall are shown for only the low flow rates because at high flow
rates the severe velocity gradients w the presence of the hole
in the tube wall make the acouracy of the measurements doubtful.
The data shown were taken with both rounded and right-angle-edge

enlmances, but the velocity distributionswith the two types of
entrame were the same within the error of the measurements.

Ccmrparisonof the data in figure 4(b) with those.of 19ikuradse
and of Reichardt (reference3) shows close agreement for all values
of y+ up to about 600. For higher values of y+, the mrres-
ponding values of u+ are @lghtly higher than those obtained
by Nikuradse (reference1, p. 242);-the maximum deviation, however,
is only about 5 percent.

A method of using figure 4 to obtain the velocity distribution
for a particular tube when the flow rate is given is Nicated in
the discussion of figure 8.

Inccmrp?essible-flowequations. - The curve corresponding to
equation (12) for ticompressibleflow near the tube wall is in-
cluded in figure 4 and is in good agreement with the experimental
resultsfor values of y+ ih?omO to 26. The value of the con-
stant n in the equation is 0.109, as determined from the
experimental data.

An bportan t property of equation (12) is that for small
values of y+, u+ d y+ sre approximately equal, that is,
the flow predicted by the equation is nearly laminar. This approach
to equality of u+ ani y+ is due to the fact that as the wall
is approached the eddy diffusivity E becomes very small and is

,.
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zero at the wall (equation (5)). The accuracy with which equa-
tion (12) predicts the experimentaldata for y+ fYom O to 26
obviates the necessity of assuming the existence of a separate
layer near the wall that is purely laminer, but does not eliminate
the possibility of its existence, as has usually been done in pre-
vious investigatiorm. A single equation has therefore been obtained
that, for adiabatic incompressibleflow, adequately represents the
two regions, which are comnonl.ycalled the laminar layer and the
buffer laypr. The buffer layer has previously been represented only
by empirical equations.

The agreement of equation (12) with the data for values of
y+ from O to 26 does not eliminate the possibility of the exist-
ence of a very thin layer that is purely lamhar, for exemple, for
the region O <y+C3. It is possible that a finite layer exists
in which adjacency of the wall completely damps out turbulence.
The thiclmess of the layer then correspozilsto some critical wall
Reynolds number p~ye/M where ~ is the velocftY at the @8e
of the layer and ye is the thictiess of the layer. Velocity
distributions for O < y+ <3 givenby equation (1.2)are prac-
ticddy laminar, however, so that it makes little difference, for
calculatingvelocity distributions,whether the layer is taken
into consideration. The only case in which presence of the layer
may become important is that of heat transfer in fluids having
high Prandtl number, where the turbulence predictedby equation (5),
though it may be slight, is important because of the small amount
of heat transferred by conduction.

The agreement of equation (12) with the data, together with
the discussion preceding the derivation of the equation, indicate
that in tbe region close to the wall the mechanism of turbulent
transfer of momentum canbe considered affected mainlyby quanti-
ties that are determined relative to the wall; that is, by the
distance of the point from the wall.ad by the velocity at the
point relative to the wall. As was shown in the discussion pre-
ceding the derivation of equation (12), the velocity distribution
about the point is Lmown to a first approximationwhen the two
quantities u ti y are known at the point.

The general form of the equation that is usua~ e~ployed to
represent the turbulent regime was obtained by von EArman and is,
as shown in the analysis section,

u+ =bogey++c
K

(15)
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The values of the constants C and R, obtained from
Nikuradse’s data (reference 1), are 5.5 afi 0.40, resTectivel.Y.
Corresponding values that represent the present data somewhat
better ere C . 3.8 @ ~ = 0.36. me c~e rePresentiQ3
equation (15) using these values is plotted in figure 4, in which
god agreement with the experimental data is indicated for y+ = O
to y+ = 26. The curves corres~ofiing to the equations for flow
near the wall (equation (lI?))aml flow at a distance from the wall
(equation) cross at fi =26.

The agreement of equation-(15)with the data, t%atherwiti
the discussion preceding the derivation of the equation, indicate
that for a region distant from the wall the mechanism of turbulent
transfer of momentum can be considered dependent mainly on the flow
comlitiona in the vicinity of the point considered; that is, on the
velocities h the vicinity of the ~oint relative to the velocity at
the point and not on the position of the point in the tube (the
/distancefrom the wall) or on the velocity relative to the wall.

The c~es representing equations (12) and (15) have slopes
that are not quite equal at their intersectionat y+ = 26; this
disparity would, however, be expected because the two equations
were derived with the assumption that the turbulence mechanism in
the two regions is dominated by different factors; hence an abrupt
change in turbulencemechanismat the intersection is implied in
the equations. Actually, there is probably a gradud chqe that
could not be investigatedby the simplified methcds wed herein.
lhasmuch as the actual error in the vicinity of the intersection
is insignificant,the present treatment is considered adequate for
adiabatic flow.

The value for K (in equation (15)), which is lmown as the
I&m&n constant,was checked by calculating friction factors h
Reynolds numbers and plotting l/@ against Rem as shown
in figure 5. The line drawn through the data corresponds to the
&m&relation between friction factor ail Reynolds number, which
ia

This equation is.derived in reference 2,directly &cm the
equation for velocity distribution. The value of K was 0.36

.
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as before, d C2 is “foun3from the data to be - 1.E?4. Both

velocity-distributionani friction-factor data therefore indicate
that a value for K of 0.36 is reasonable, at least for the
present tube.

The variation of the ratio of velocity at the center of the tube
to bulk velocity with Reynolds number, ae indicated in figures 3(a)
and (b) canbe explained by the plots of the equations in fig-
ure 4(aj. As y+ increases the curve becomes flatter. 13mreasing
values of Reynolds nuuiberoorrespoti to increasing values of y+
in the central portion of the tube, SO tht for high VdU9S Of
Reynolds number we velocity profile in the central portion of the
tube becomes flat; thus the ratio of ’velocity’atthe center of the
tube to bulk velocity becomes less than for low Reynolds numbers.

Effect of variable shear stress. - Neither u+ nor y+ are
functions of the tube radius. Neglecting the radius in the correla-
tion is equivalent to assuming uniform shear stress across the tube.
(See equations (15) ad (2o) in the section “Analysis.”) The
results can be correlated by assuming uniform shear stress aoross
the tube because the greatest rate of velocity change with dist-
ance &cm the wall occurs near the wall where the change in shear
stiess is very small. A comparison between equation (20), which
takes into account the variation in shear stress across the tube,
and equation (15), which assumes uniform shear stress, is shown in
figure 6. ‘The oonstant C is so determined for each value of
&o+ that u+ = 13 when y+ . 26. These values were selected
in order to make the mean deviation of equation (20) from equa-
tion (15) a minimum. The maximum difference between the values=
of u+ determined by the two equations is about ~ percent, which

is the same as the scatter of the experimental data points. Equa-
tion (15) therefore gives an accuracy comparable to that obtained
inmost flow measurements so that consideration of the variation
in shear stress across the tube does not seem necessary.

Equations for compressible fl&. - The equations for com-
pressible flow are ~esented in figure 7. For graphing equation (29),
the value of the integral was found by plotting the integrand against
u+ and planimetering the area under the curve. The constant n
was again set equal to 0.109 and d for ati was found from vis-
cosity data to have an average value of 0.664 for temperatures
between 0° ami 2000° F. For plotting equation (33), Cl was deter-
mined for each value of a from the value of u+ at j+ = 26
found from equation (29). ~om the definitions of M, T?, u+,

,

.
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shcmn that the relation between u+, M, y,”

U+2. 1
.

( 2

)
—+1

u M2(7-1)

For M = 1, 7 = 1.4, and u= 0.00025, u+ is foti to be 25.8.
This point is marked on the curve.

As u increases, u+ decreases for constant values of y+
(fig. 7). For local lkch numbers up to 1, h ever, the deviation

3is slight and, in general, is not more than z ~ercent from the

value of u+ givenby the incompressible-flowequation. A single
line is used to repr&ent equation (29) bechuse the canpressibility
effect is so small that it cannot be seen when the equation is
plotted to the scale used in this figure.

It therefore appears that with respect to compressibility
effects and tube radius or shear-stressvariation, the simplified
incompressible-flowequations (E) and (15) give an aocuracy cctn-
parable to that of flow measurements. The fluid properties us@
in u+ and y+ sre evaluated at the wall or total temperatum.

‘Flow Rates. .

The flow rates corresponding to ~ious pressure gradients.
along the tube canbe obtained framthe velocity-distribution
equations by a graphical integration. For this integration,

(Q/Po) U+ was
2
lotted against (ro+ - Y+)2, where

P& = l/(1-an ). It can easily be shown that the area u&r

this ourve is w (4”” po)lYcgPo2. E this dimensionless

group is divided by ro+ a&multiplied by m in order to

elhinate TO, there res@ts W/(gV@O). This parameter is

plotted against ro+ for various values of a in figure 8.
Figure 8 gives the flow rate to be expeoted for a given sheer
stress or friction-pressuregradient. The data of figure 8 also
provide a mans for obtaining the velocity distribution in a
particular tie from the generalized velocity distributions in
figures 4 and 7 when the flow rate d the fluid properties are

,)

,
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known. Measured flow rates for conditionswhere compressibility
effects are small are also plotted in figure 8 ani agree closely
with the ourve for a=O. The curves indicate that at a Mach number
of 1, compressibilityeffects increase the flow-rate parameter

W/(E!#do) by about I-2Iercent. Seveml data points corresponding
“ to higher values of a are also plotted in the figure and the trends .
corresponding to increasingvalues of a appear to be similar to
the p??ediotedtretis, although no definite conclusion can be drawn
from the limited range of values of a shown. Data corresponding
to higher values of a are not plotted because rel-~ble measure-
ments of the severe pressure gradients involved could not be
obtained.

coNoLmm. RE!wlE3

The results obtained in this investigation should be applicable
to any gas to which the perfect gas law applies W for which the
l%andtl number is close to 1. The value of the exponent d for
viscosfty variation with temperature was obtained specifically for
air, but it occurs only @ the equation for compressible flow close
to the wall where compressibilityeffects are negligible. The. ~_
equations and the curves for incompressibleflow should, of course,
also be applicable to IiquidsJ inasmuch as the fluid properties
that determine the flow phenomena are common to liquids and gases.

.

8UMWLRY OF REWL’E

The followfng results were obi@ned from the analytical and
experimental investigationof the adiabatic flw of air through a
smooth tube having an inside diameter of,0.87 inch @ a length of
87 inches:

1. The len@h of tube required for obtaining fully developed
flow was greater with a rounded entrance than with a right-angle-
edge entrance. With a rounled entrance, the flow at the axis of
the lnibewas still developing slightly at 100 diameters from the
entrance.” For both entninoes, however, the flow close to the wall
developed in a much shokter distance than did the flow in the center”
of the tube. The flow close to the wall determines the shear stress
or pressure gradient along the tube, so that the effect of entrance
on these factors is slight except for very short tubes.

.
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2.A good correlation of velocity-distributiondata for fully
developed flow was obtained by using the well-lmown dimensionless
velocity and distance parameters. The data agreed closely.with
those of I?ikuradseand other investigators.

3. The equation derived for adiabatic incompressibleflow close”
to a wall represented well the relation between the velocity ani
distance parameters found experimentallyfor the two regions
that have generally been called the laminsr layer and the buffer
layer. .

4. The analysis and experimental investigations~icated that
the effect of variable S- stress on velooity distributions is
slight; the maximum variation

2

the velocity parameter caused by
this effect was approximately ‘percent.

5. Thecompressible-fluwequations showed that the effects
b‘of compressibilityon velocity distmibutione are small for lkch
numbers up to 1; the maximum vwiation in the velocit parameter

Icaused by compressibilityeffects was approximately ~ percent.

6. Theshplified inccanpressible-flow equations,derived on
the assumption of uniformity of sheer stress across the tube pre-
dicted velocity distributions in smooth tubes for Mach numbers w
to 1 with an acouracy comparable to that of flow and pressure
measurements.

7. Graphical tite&ation of the”velocity-distributionequa-
tions gave flow ~tes that agreed.closely with flow rates from
orifice measurements.

Lewis Flight Propulsion@boratory,
National Advisory Committee for Aeronautics,

Cleveland, Ohio, January 9, 1950.
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APPEKOIX - SYMBOIS

The following synibolsare used in the report:

A Internal oross-sectionalarea of tube, sq ft .

cYclj%’ constants of integration

CP

D

d

g

J

n

P

P

R

r

‘o

T

‘o

t

%

u

%

%

specific heat of fluid at com”tant pressure, Btu/(lb)(%)

inside diameter of tube, ft

exponent that describes variation of viscosity of fluid
with tentpmture

acceleration due to gravity, 32.2 ft/sec2

mechanical equivalent of heat, 778 ft-lb/Btu

constant

total pressure, lb/sq ft absoltie

static pressure, lb/sq ft absolute

perfect gas constant, ft-lb/(lb)(%)

radius, distance &cm tube oenterj ft

inside tube radius, ft

total temperature, OR

absolute wall total.temperature, OR

absolute static temperature, %

bulk or average s~tic temperature of fluid at cross
section of tube, OR

velocity parallel to axis of tube, ft/sec

bulk or average velocity at cross section of tube, ft/sec

velooity at center of tube, ft/sec
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w

x

Y

7

c

K

v

l+)

P

%

PO

T

Tt

G

To

l!iACATN2X58

fluid-flow rate, lb/see

axialdistance from tube entrance, i%

distance from tube wall, ft

ratio of specific heat at constant pressure to specific
heat at.constant volume

coefficient of eddy diffusivityy sq ft/sec

IJ
Kkrman constant

absolute viscositi of fluid, lb-sec/sq ft

absolute visoosity of fluid at wall, lb-eec/sq f%

mass density, lb-sec2/f$4

bulk or average density at cross section of tube,
lb-sec2/ft4

mass density of fluid at wall, lb-sec2/ft4

shearstress in fluid, lb/sq ft

shear stress produmi by turbulence, lb/sq ft

sheax stresaprcxhxd.by viscosity, lb/sq ft

shesr stress in fluid at wall, lb/sq ft

.

.

,.

Subscri@s: ,

fr on friction pressure gradient

onmamentum pressure gradient

Dimensionless parameters:.

a compressibilityparameter, ‘o

&JcpTo~o

.
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f

M

Re

ro+

Y+

1.

2.

3.

4.

5.

6.

()D~
Cixfi

friotion factor, - —
2p@#

ttie-radius p9mmeter,
%

K ‘0

velocity paremeter, ~
m

‘wall-distance
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Figure 1. - Apparatus for measuring velocity distributions. .
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Figure 2. - Typical velocity distributions for flow through tube
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(a) Rectangular coordinate plots with data obtained neai the wall plotted to two y+ soales.

Figure 4. - Generalized velocity distribution for fully developed flow in smooth tubes.
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Figure 4. - Conoluded. Generalized velooity distribution for fully developed flow in smooth tubes.
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